государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа №1 имени Героя Советского Союза Зои Космодемьянской городского округа Чапаевск Самарской области

PACCMOTPEHO

На заседании МО учителей математического и естественно-научного цикла

ПРОВЕРЕНО

Заместитель директора

____ Никитина А.Н.
29.08.2025

УТВЕРЖДЕНО

Директор ГБОУ СОШ №1 г.о.Чапаевск Южакова Е.А.

Приказ №270-од от 29.08.2025

Рабочая программа элективного курса

«Генетика»

для обучающихся 10 – 11 классов

Пояснительная записка

За основу взяты: учебно-методическое пособие Кириленко А.А. Биология. Сборник задач по генетике. Базовый, повышенный, высокий уровни ЕГЭ-Изд.4-е.-Ростов н/Д: Легион,2021 и программа элективного курса «Генетика человека» Ю.В.Филичевой, напечатанная в сборнике: Программы элективных курсов. Биология.10-11 классы. Профильное обучение /авт.-сост. В.И. Сивоглазов, В.В.Пасечник.-2-е изд., стереотип. - М.: Дрофа, 2006.- 125,[3] с. — (Элективные курсы).

Одним из приоритетных направлений современной биологической науки является генетика. Велико как ее теоретическое, так и прикладное значение, но особое место в системе разделов и отраслей генетики занимает генетика человека. Международный проект «Геном человека», углубление знаний в области медицинской генетики, разработка современных методов генной терапии, синтез знаний в области генетики и экологии человека, изучение вопросов происхождения и эволюции человека с точки зрения генетики и экологии человека. Поэтому весьма актуальным является углубление содержания этого раздела в рамках предмета «Общая биология» для изучения в старших классах средней школы . Это актуально и с позиций концепции профильного обучения, и формирования естественнонаучного и гуманистического мировоззрения, и позиций воспитания биологической и экологической культуры молодого поколения. Исходя из этого, и разработана данная программа курса «Основы генетики».

Курс предусматривает изучение и теоретических, и прикладных вопросов, в частности медицинской генетики и психогенетики. В содержании курса усилены эволюционный и экологический аспекты изучения генетики человека. Причем особое влияние некоторых антропогенных факторов на генотип отдельного человека и на генофонд человечества в целом и, следовательно, на общие перспективы развития биологического вида человек разумный.

Изучение курса предполагает решение генетических задач, содержание которых соответствует рассматриваемым темам. Программой предусмотрено также выполнение ряда лабораторных и практических работ, самостоятельная реферативная работа учащихся по некоторым темам.

Программа рассчитана на 70 часов аудиторных занятий.

Учебно-тематический план

№ п/п	Наименование темы	Общее количество часов	В том числе Теор. занятия	Практич.занятия
Тема	10 класс 1.Введение	4	4	-
1	Грегор Мендель	1	1	

_	Τ_	Γ.	1.	1
2	Основные понятия генетики	1	1	
3	Методы генетики	1	1	
4	Обобщающий урок по основным понятиям и методам генетики	1	1	
Тема	2.Законы Г.Менделя	6		
5	Первый закон Г.Менделя. Второй закон Г.Менделя	1	1	
6	Пр/р1 Оформление задач по генетике План решения задачи по генетике	1		1
7	Пр/р 2 решение задач на 1-й и 2-й законы Г.Менделя	1		1
8	Третий закон Г.Менделя Гипотеза чистоты гамет	1	1	
9	Пр/р3 решение задач на 3-й закон Г.Менделя	1		1
10	Пр/р4 решение задач на 3-й закон Г.Менделя с использованием решетки Пеннета	1		1
Тема 11	3.Полигибридное скрещивание Пр/р №5 решение задач	1		1
Тема	4.Взаимодействие аллельных генов	4		4
12	Полное доминирование Неполное	1		1

	доминирование			
	Пр/р №6 решение задач			
13	Кодоминирование	1		1
	Пр/р№7 решение задач			
14	Сверхдоминирование	1		1
	Пр/р №8 решение задач			
15	Множественные аллели	1		1
	Пр/р №9 решение задач			
Тема	5.Анализирующее	1		1
16	скрещивание			
	Пр/р 10 решение задач			
Тема	6.Взаимодействие неаллельных генов	6		6
17	Кооперация	1		1
	Пр/р 11 решение задач			
18	Комплементарное	1		1
	действие генов			
	Пр/р 12 решение задач			
19	Эпистаз	1		1
	Пр/р 13 решение задач			
20	Полимерия	1		1
	Пр/р 14 решение задач			
21	Плейотропия	1		1
	Пр/р 15 решение задач			
22	Модифицирующее	1		1
	действие генов Пр/р 16 решение задач			
Тема	7.Сцепленное	2	1	1
тема	7.Сцепленное	<u> </u>	1	1

	наследование.			
	Закон Т. Моргана			
23	Сцепленное наследование. Закон Т. Моргана	1	1	
24	Пр/р 17 решение задач	1		1
тема	8.Генетика пола. Наследование, сцепленное с полом	2	1	1
25	Генетика пола. Наследование, сцепленное с полом	1	1	
26	Пр/р 18 решение задач	1		1
Тема 27	9.Цитоплазматическая (нехромосомная) наследственность	1	1	
тема	10.Генетика популяций. Закон Харди- Вайнберга	2	1	1
28	Генетика популяций. Закон Харди-Вайнберга	1	1	
29	Пр/р 19 Практическое значение закона Харди-Вайнберга	1		1
Тема	11.Генеалогический метод генетики	3	1	2
30	Генеалогический метод генетики	1	1	
31	Пр/р 20 Анализ родословных	1		1
32	Пр/р 21 Составление родословных	1		1

Тема	12.Изменчивость, размножение, онтогенез	3	3	
33	Хромосомы, их строение	1	1	
34	Способы деления клеток	1	1	
35	Обобщающий урок	1	1	
		35	14	21
Тема	11 класс	1	1	
1	Вводный урок			
2	Методы изучения генетики человека	4	2	2
3	Наследственный аппарат соматических и генеративных клеток человека	4	3	1
4	Механизмы наследования различных признаков у человека	6	3	3
5	Генетические основы онтогенеза человека	6	6	-
6	Основы медицинской генетики	9	5	4
7	Эволюционная генетика человека	4	4	-
8	Обобщение	1	1	
	Итого	34	24	10

10 класс

1.Введение (3 ч)

Грегор Мендель биография. Основные понятия генетики. Методы генетики.

Обобщающий урок по основным понятиям и методам генетики

2.Законы Г.Менделя (6ч)

Первый закон Γ .Менделя. Второй закон Γ .Менделя. Оформление задач по генетике. План решения задачи по генетике.

Третий закон Г.Менделя. Гипотеза чистоты гамет.

Практические работы: Оформление задач по генетике. План решения задачи по генетике.

Решение задач на 1-й и 2-й законы Г.Менделя. Решение задач на 3-й закон Г.Менделя.

Решение задач на 3-й закон Г.Менделя с использованием решетки Пеннета.

3.Полигибридное скрещивание (14)

Полигибридное скрещивание.

Практическая работа: Решение задач.

4.Взаимодействие аллельных генов (4ч)

Полное доминирование. Неполное доминирование. Кодоминирование.

Сверхдоминирование. Множественные аллели

Практические работы: решение задач на все виды взаимодействия аллельных генов.

5.Анализирующее скрещивание (14)

Анализирующее скрещивание.

Практическая работа: Решение задач.

6.Взаимодействие неаллельных генов

Кооперация. Комплементарное действие генов. Эпистаз. Полимерия. Плейотропия.

Модифицирующее действие генов.

Практические работы: решение задач на все виды взаимодействия неаллельных генов.

7.Сцепленное наследование. Закон Т. Моргана.(2ч)

Сцепленное наследование. Закон Т. Моргана.

Практическая работа: Решение задач.

8.Генетика пола. Наследование, сцепленное с полом (14)

Генетика пола. Наследование, сцепленное с полом

Практическая работа: Решение задач.

9.Цитоплазматическая (нехромосомная)

наследственность (1ч)

Цитоплазматическая (нехромосомная) наследственность (1ч)

10.Генетика популяций. Закон Харди-Вайнберга

Генетика популяций. Закон Харди-Вайнберга.

Практическая работа: Решение задач.

11.Генеалогический метод генетики (3ч)

Генеалогический метод генетики.

Практические работы: Анализ родословных. Составление родословных

12.Изменчивость, размножение, онтогенез (3ч)

Хромосомы, их строение. Способы деления клеток.

Обобщающий урок.

11 класс

Введение (1 ч)

Человек как объект генетических исследований.

Сложность изучения генетики человека.

1.Методы изучения генетики человека (4 ч)

Генеалогический метод. Родословные древа, методики их составления для признаков с разным типом наследования.

Близнецовый метод. Монозиготные и дизиготные близнецы. Конкордантность и дискордантность признаков у близнецов. Изучение степени влияния наследственных задатков и среды на формирование тех или иных признаков у человека.

Цитогенетические методы: простое культивирование соматических клеток.

Биохимические методы.

Метод моделирования.

Метод дерматографики.

Популяционно-генетический (статистический) метод. Генетики популяции человека. Насыщенность популяций мутациями, их часто и распространение. Принципы равновесия

мутационного процесса и естественного отбора в популяциях человека. Изоляты и инбридинг. Балансированный наследованный полиморфизм: геногеография групп крови, аномальных гемоглобинов.

Модификационная изменчивость в популяциях человека. Признаки с широтой норм реакции. Практическое применение знаний о закономерностях модификационной изменчивости в популяции человека.

Практическая работа

Решение задач по теме: «Генеалогические древа», «Популяционная генетика и закон Харди-Вайнберга в применении к популяции человека».

Лабораторная работа

Изучение статистических закономерностей модификационной изменчивости (на примере произвольно выбранных количественных признаков человека).

Темы для рефератов: «Родословные древа известных людей»; «Близнецы как биологическое явление».

2.Наследственный аппарат соматических и генеративных клеток человека (4ч)

Хромосомный набор клеток человека. Кариотип. Типы хромосом. Аутосомы и половые хромосомы. Идиограммы хромосомного набора клеток человека. Структура хромосом. Хроматин: эухроматин, гетерохроматин, половой храмотин. Хромосомные карты человека и группы сцепления.

Геном человека. Явление доминирования (полного и неполного), кодоминирования, сверхдоминирования. Экспрессивность и пенетрантность отдельных генов.

Международный проект «Геном человека»: цели, основные направления разработок, результаты. Различные виды генетических карт человека.

Лабораторная работа

Изготовление и изучение микропрепаратов щечного эпителия.

Темы для реферата: «Международный проект «Геном человека».

3.Механизмы наследования различных признаков у человека (6ч)

Менделизм; закономерности наследования признаков у человека и типы их наследования – аутосомной-доминантный и аутосомно-рецессивный.

Признаки: сцепленные с полом, детерминированные полом, ограниченные полом.

Сцепленное наследование. Кроссинговер, его роль в обогащении наследственного аппарата клеток.

Полигенное наследование у человека: комплементарность, эпистаз, полимерия, плейоторопное взаимодействие генов.

Цитоплазматическое наследование у человека.

Практическая работа

Решение задач по теме «Различные механизмы наследования признаков у человека».

4.Генетические основы онтогенеза человека (6ч)

Особенности гематогенеза человека. Строения яйцеклетки и сперматозоида человека, их генетический аппарат. Генетический смысл процесса оплодотворения.

Генетические аспекты эмбриогенеза человека. Регуляция активности генов в ходе онтогенеза (ядрено-цитоплазматическое взаимодействие, межклеточное влияние, действие гормонов, контроль транскрипции и т.д.). Генетический контроль клеточной пролиферации. Гены и дифференцировка клеток. Гипотеза морфогенеических полей. Детерминация, индукция, компетенцияю Клональная гипотеза цитодифферецировка. Роль генов в морфогенезе. Депрессия генов в ходе органогенеза.

Психогенетика. Роль наследственности и среды в проявлении специфических для человека фенотипических признаков – склонностей, способностей, талантов. Общая и специальная одаренность.

Темы для рефератов: «Роль наследственности и среды в проявлении специфических для человека фенеотипических признаков — склонностей, способностей, талант».

5.Основы медицинской генетики (9ч)

Мутации, встречающиеся в клетках человека. Основные группы мутаногенов: физические, химические биологические. Принципы классификации мутации (по типу клеток, по степени влияния на генотип, по степени влияния на жизнеспособность организма и т.д.). Основные группы мутаций, встречающиеся в клетках человека: соматические и генеративные: летальные, полулетальные, нейтральные; генные или точковые, хромосомные и геномные.

Наследственные заболевания.

Моногенные заболевания, наследуемые как аутосомно-рецессивные (фенилкетонурия, галактозимия, мукависцинох и т.д.), аутосомно-доминантные (ахондроплазия, полидактилия, анемия Минковского-Шоффара и т.д.), сцепленные с X-хромосомой рецессивные (дальтонизм, гемофилия, миопатия Дюшенна), сцепленные с X-хромосомой доминантные (коричневая окраска эмали зубов, витамин D-резистентный рахит и т.д.), сцепленные с Y-хромосомой (ранее облысение, ихтиозис и т.д.).

Хромосомные и геномные наследственные заболевания, связанные с изменением числа целых аутосом и их фрагментов (трисомии – синдром Дауна, синдром Патау, синдром Эдвадса; делеции – синдром «кошачьего крика») и с изменением числа половых хромосом (синдром Шершевского-Тернера, Кляйнфельтера, тисомии X и т.д.).

Врожденные заболевания. Критические периоды в ходе онтогенеза человека. Терратогенные факторы. Физические терратогены. Химические терратогены. Пагубное

влияние на развитие плода лекарственных препаратов, алкоголя, никотина и другихсоставляющих табака, а также продуктов его горения, наркотиков, принимаемых беременной женщиной. Биологические терратогены.

Болезни с наследственной предрасположенностью (мультификаторные): ревматизм, ишемические болезни сердца, сахарный диабет, псориаз, бронхиальная астма, шизофрения и т.д.), особенности их проявления и профилактика.

Профилактика наследственно обусловленных заболеваний. Медико-генетическое консультирование. Методы пренатальной диагностики. Достижения и перспективы развития медицинской генетики. Генная терапия.

Экскурсия. Посещение медико-генетической лаборатории.

Практическая работа

Решение задач по теме «Генеалогические древа семей с распространенными наследственными заболеваниями».

Темы для рефератов: «Мутагены антропогенного происхождения»; «Достижения и перспективы развития медицинской генетики»; «Генная терапия».

6. Эволюционная генетика человека (4 ч)

Генетические основы антропогенеза. Биомолекулярные доказательства животного происхождения человека. Молекулярно-генетическое сходство человека и других приматов. Происхождение рас и расогенеза. Генетическое родство и генетические различия представителей разных рас. Роль географической и социальной изоляции в формировании генофонда человечества. Ното sapiens как единый полиморфический вид. Перспективы человека как биологического вида с точки зрения генетики. Евгеника. Клонирование человека: морально-этический и научный аспекты проблемы.

Темы для рефератов: «Происхождение рас и расогенез с точки зрения генетики»; «Евгеника»; «Клонирование человека: морально-этический и научный аспекты проблемы».

Основные требования к знаниям и умениям

В результате изучения курса генетики учащиеся должны приобрести новые знания и умения.

Овладеть основными терминами и понятиями, используемыми в генетике, в том числе в генетике человека, в психогенетике, медицинской и эволюционной генетике, научиться их грамотно применять.

Приобрести знания:

Об особенностях человека как объект генетических исследований и об основных методах изучения генетики человека;

Об особенностях организации наследственного аппарата соматических и генеративных клеток человека;

О геноме человека;

О различных механизмах наследования признаков у человека;

О генетических основных онтогенеза человека;

О мутагенах, в том числе и антропогенного происхождения; о типах мутации, встречающихся в клетках человека;

Об основных видах наследственных и врожденных заболеваний и о заболеваниях с наследственной предрасположенностью;

Об особенностях генетической структуры популяций человека и о распространении в них некоторых признаков;

О модификационной изменчивости в популяциях человека;

О генетических основах антропогенеза и о перспективах эволюции человека как биологического вида с точки зрения генетики.

Приобрести и отработать умения:

Применять знание генетических закономерностей при рассмотрении вопросов происхождения и эволюционирования вида Home sapiens;

Давать аргументированное объяснение распространению тех или иных признаков в популяциях человека;

Решать генетические задачи, связанные содержанием с генетикой человека

Составлять генеалогические (родословные) древа и анализировать по ним характер наследования того или иного признака в ряду поколений

Изготавливать микропрепараты и работать с микроскопом

Осуществляя реферативную работу, использовать ресурсы сети Интернет; работать с учебной и научно-популярной литературой, с периодическими изданиями

Работать над содержанием курса, составлять планы, схемы, конспекты

Изучение курса базируется на знаниях, полученных учащимися при изучении биологических дисциплин: основ анатомии и физиологии человека, цитологии, молекулярной биологии и биохимии, гистологии, эмбриологии, общей генетики и современной теории эволюции. Следует отметить, что ряд вопросов, изучаемых в данном курсе, носят интегративный характер. Большую роль в его усвоении играют знание, приобретенные учащимися при изучении других предметов естественного цикла (химии, физики, математики) и общественных дисциплин (географии, обществознания и права).

Таким образом, изучение элективного курса «Генетика человека» не только обеспечивает приобретение учащимися знаний в одной из наиболее актуальных областей современной общебиологической науки, но и способствует формированию целостной картины мира и пониманию своего положения в нем, принимаю роли и предназначения современного человека.

Система оценивания результатов деятельности учащихся.

• Устные ответы учащихся оцениваются по пятибалльной шкале:

Отметка	Характеристика ответа
(5)	Выставляется в том случае, когда в ответе ученика полно и верно раскрыто основное содержание вопроса, соблюдена логическая последовательность элементов ответа; общие положения аргументируются фактами, обосновываются аргументами. Показывает усвоение требуемых вопросом умений (например, классифицировать, систематизировать информацию и др.)
«4»	Выставляется в том случае, когда в ответе ученика содержится верное освещение темы вопроса, но отсутствует полнота его раскрытия; соблюдена логика изложения, но отдельные положения ответа не подтверждены фактами, не обоснованы аргументами. Выставляется в том случае, когда ученик показал владение требуемым умением, но не проявил достаточно уверенного и полного владения этим умением, допустил отдельные незначительные ошибки по заданному вопросу.
«З»	Выставляется в том случае, когда в ответе ученика приведены отдельные несистематизированные положения, частично приведены отдельные верные факты. Ученик проявил слабое освоение требуемого умения, однако выявил верное понимание отдельных элементов содержания на основе частичного использования необходимого умения.
«2»	Ставится, если ученик обнаруживает незнание большей части соответствующего раздела изучаемого материала, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал

• Тестовые работы оцениваются с учетом процентного выполнения заданий с дальнейшим переводом в пятибалльную шкалу:

Менее 25% недопустимый уровень *→*(2)»

От 25% до 50% критический уровень – «З»

От 51 до 75% допустимый уровень — «4»

От 76% до 100% оптимальный уровень -<5».

- 1. Биология. Сборник задач по генетике. Базовый, повышенный, высокий уровни ЕГЭ: учебно-методическое пособие/ А.А.Кириленко .-Изд..4-е.- Ростов н/Д:Легион, 2012.-232,с..
- 2. Антропология: Учеб. Для студ. Высш. Учеб. Завед. М.: ВЛАДОС, 2003
- 3. Дубинин Л. Б. Горизонты генетики. М.: Просвещение, 1970
- 4. Константинов А. В. Биология индивидуального развития. Минск: Изд-во БГУ, 1978
- 5. Конюхов Б. В. Генетика развития позвоночных. М.: Наука, 1980
- 6. Ламберт Д. Доисторический человек: Кембриджский путеводитель. Л.: Недра, 1991
- 7. Орехова В. А. и др. Медицинская генетика. Минск: Вышэйшая школа, 1997
- 8. Проблемы эволюции человека и его рас: Сборник. М.: Наука, 1968
- 9. Сингер М., Берг П. Гены и геномы. М.: Мир, 1998
- 10. Сойфер С. Г. Международный проект «геном человека» // Соросовский образовательный журнал. 1996. № 12 С.4 12
- 11. Фоули Р. Еще один неповторимый вид: Экологические аспекты эволюции человека. М.: Мир, 1990
- 12. Фридрих В. Близнецы. М.: Прогресс, 1985
- 13. Шевченко В. А. Генетика человека: Учеб. Пособие для вузов. М.: ВЛАДОС, 2002
- 14. Эфроимсон В. П. Введение в медицинскую генетику. М.: Гос. Изд-во медицинской литературы, 1964
- 15. Яблоков А. В. Эволюционное учение (Дарвинизм): Учеб. Для биол. Спец. Вузов. М.: Высшая школа, 1998